Measure it for us when you get back Jacob, that'll be easiest.
Cheers
And to give you some encouragement:
As long as you have 2.5mm2 conductors minimum, we're not worried about the current capacity of the cable. It will be ample.
What we're interested in is the voltage dropped or lost across the length of the live and neutral wires over a 35metre out and 35m back loop.
If your loads add up to 15Amps, you'll lose 10V off the mains along that cable for example.
There are rules in the wiring regs that state the maximum loss of voltage through the entire wiring from your consumer unit to any socket. 16A circuit, 10V loss, about 4% of 240V is around the borderline condition.
But, your lights are LED and they will be very tolerant of the supply voltage.
Your machine is on a VFD which is the same. If the mains is a bit low, it'll just pull a bit more current to make up for it.
The dust extractor is not critical machinery so ifnit runs a little slow, it shouldn't matter much. Just keep an eye on it.
Make sure the supply cable to the shed is fed from a breaker with an RCD. That provides valuable extra safety in making sure the RCD will trip in case of an earth fault even though the cable is long.
Lastly, whenever your load is mostly motors and electronics, not simple resistive loads like heaters, you can't use simple calculators or rules of thumb based on 4Amps = 1kW.
The full load currents from your motor rating plates are what you need to add up (
note @Spectric's point below, the Full Load Amps on a 3 phase emotor are PER PHASE and to get the single phase equivalent you have to multiply that value by SQRT(3) which is 1.73). Then allow just a few amps more for the LEDs, battery chargers and the VFD conversion losses. (VFDs are very efficient at converting single to 3ph but not 100%).
The VFD will do a superb job of reducing the inrush surge to your main motor so I expect all will be fine just so long as the cable is 2.5 mil.